II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

COMMUNICATION THEORY (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Code: 20EC3402

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Explain the generation of DSB-SC using	L2	CO1	7 M		
		balanced modulator.					
-	b)	Describe the envelope detector for detection	L2	CO1	7 M		
		of AM with wave forms and explain the					
		principle of operation.					
OR							
2	a)	The output power of an AM transmitter is	L3	CO2	7 M		
		1KW when a sinusoidal signal modulated to					
		a depth of 100%. Calculate the power in					
		each side band when the modulation depth					
		is reduced to 50%.					
	b)	Explain Super heterodyne receiver with neat	L2	CO1	7 M		
		block diagram.					
		1		1	L		

Max. Marks: 70

		UNIT-II			
3	a)	Define Modulation index of FM. Sketch the spectrum of Narrow Band FM (NBFM) and Wide Band FM (WBFM) for various modulation Indices.	L3	CO2	7 M
	b)	Demonstrate the detection of FM using Phase Locked Loop (PLL).	L3	CO2	7 M
	1	OR	1	,	
4	a)	A 10 MHz carrier is frequency modulated by a sinusoidal signal such that the peak frequency deviation is 50 kHz. Calculate the modulation index and the approximate bandwidth of the FM signal if the frequency of the modulating signal is: (i) 2 kHz (ii) 10 kHz.	L3	CO2	7 M
	b)	Explain the functionality of each block of Balanced Frequency discriminator.	L2	CO1	7 M
		UNIT-III			
5	a)	A random noise X(t) having power spectrum $S_{XX}(\omega) = 3/(49+\omega^2)$ is applied to a network for which $h(t) = t^2 \exp(-7t) u(t)$. The network response is denoted by Y(t) (i) Calculate the average power of X(t) (ii) Solve for power spectrum of Y(t) (iii) Calculate average power of Y(t).	L3	CO3	7 M
	b)	When a random process is said to be mean ergodic? If a random process $X(t)$ is given by $X(t)=100 \cos(100t+\theta)$, whose θ is	L3	CO3	7 M

		uniformly distributed over $(-\pi, +\pi)$, show			
		that $X(t)$ is correlation ergodic.			
		OR			
	-)		12	CO2	7 \ 1
6	a)	State and prove any three properties of	L3	CO3	7 M
		power spectral density of a random process.			
	b)	A random process is defined as $X(t) = A \sin t$	L3	CO3	7 M
		ω t, where ω is a constant and A is a uniform			
		random variable over (0,1). Solve for the			
		auto covariance of X(t).			
		UNIT-IV			
7	a)	Analyze noise in AM receivers using	L4	CO4	7 M
		Envelope Detection.			
	b)	Explain the Capture effect and Threshold	L2	CO4	7 M
		effect in FM.			
		OR			
8	a)	Explain FM receiver model and find SNR	L4	CO4	7 M
		of FM system.			
	b)	Explain Noise in SSB receivers.	L4	CO4	7 M
	1	UNIT-V		1 1	
9	a)	State and prove sampling theorem for low	L4	CO4	7 M
		pass signals. A signal $m(t) = 4 \cos (200 \pi t)$			
		$\cos (600_{\rm III}t)$ is ideally sampled at 700 Hz,			
		and is sent through an ideal LPF with cut off			
		at 650 Hz. Determine the frequency			
		components in the filter output. What			
		changes will be there if the sampling is done			
		at Nyquist rate?			

	b)	Explain the Time Division Multiplexing	L2	CO1	7 M
		with a neat block diagram.			
	OR				
10	a)	With a neat sketch, explain Pulse Width	L2	CO1	7 M
		Modulation.			
	b)	What is Companding? Explain Companding	L2	CO1	7 M
		with A-law and µ-law.			